일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- DP
- 강화학습
- machine learning
- Mask Processing
- 그래프 이론
- Python
- dynamic programming
- YoLO
- AlexNet
- two-stage detector
- One-Stage Detector
- image processing
- deep learning
- 머신러닝
- MySQL
- Reinforcement Learning
- 딥러닝
- MinHeap
- CNN
- dfs
- canny edge detection
- eecs 498
- r-cnn
- C++
- BFS
- LSTM
- object detection
- opencv
- real-time object detection
- 백준
- Today
- Total
목록Michigan (3)
JINWOOJUNG

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/135 [EECS 498] Assignment 3. Fully Connected Networks...(2)JINWOOJUNG [EECS 498] Assignment 3. Fully Connected Networks...(2) 본문 딥러닝/Michigan EECS 498 [EECS 498] Assignment 3. Fully Connected Networks...(2) Jinu_01 2025. 1. 7. 15:00jinwoo-jung.comDeep Fully Connected Networks에서 나아가 Convolutional Network..

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/127 [EECS 498] Assignment 2. Two Layer Neural Network...(2)본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/126 [EECS 498] Assignment 2. Two Layer Neural Network...(1)본 포스팅은 Michigan Univ.의 EECS 4jinwoo-jung.com지난 과제에서 구현한 Two Layer Network는 Loss, Gradient, F..

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.0. 개발 환경OS : Ubuntu 20.04GPU : GeForce RTX 3070cuda version: 12.1torch version : 2.3.0+cu121 1. Tensor Basicsdef create_sample_tensor() -> Tensor: x = torch.tensor([[0, 10],[100, 0],[0,0]]) return x Tensor 객체는 torch.tensor를 통해 생성할 수 있다. x = mytorch.create_sample_tensor()print('Here is the sample tensor:')print(x)print(type(x))..