일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |
- Python
- Reinforcement Learning
- image processing
- 강화학습
- 그래프 이론
- C++
- real-time object detection
- hm3dsem
- DP
- hm3d
- dynamic programming
- two-stage detector
- YoLO
- CNN
- opencv
- machine learning
- ubuntu
- r-cnn
- LSTM
- NLP
- 백준
- 머신러닝
- AlexNet
- dfs
- BFS
- 딥러닝
- Mask Processing
- eecs 498
- MySQL
- deep learning
- Today
- Total
목록VGG (2)
JINWOOJUNG

https://jinwoo-jung.tistory.com/133 Very Deep Convolutional Networks for Large-Scale Image Recognition...(1)Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Imajinwoo-jung.com4. Classification E..

Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Image_Classification0. Abstract본 논문에서는 Convolutional Network의 Depth에 따른 성능을 분석한다. 3x3의 작은 Convolutional Filter를 사용하여 Network의 Depth를 16~19까지 증가시킴..