일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- NLP
- dynamic programming
- AlexNet
- opencv
- eecs 498
- 머신러닝
- 강화학습
- DP
- image processing
- BFS
- LSTM
- MySQL
- 딥러닝
- machine learning
- dfs
- two-stage detector
- MinHeap
- r-cnn
- 백준
- One-Stage Detector
- YoLO
- Python
- CNN
- ubuntu
- real-time object detection
- Reinforcement Learning
- 그래프 이론
- C++
- deep learning
- Mask Processing
- Today
- Total
목록batch normalization (3)
JINWOOJUNG

본 포스팅은 서울대학교 강필성 교수님의 Transformer to LLaMA 강의자료 및 강의를 기반으로공부한 내용을 정리하는 포스팅입니다.https://www.youtube.com/watch?v=Yk1tV_cXMMU&t=1021s08-2: Transformer Transformer는 Attention Mechanism을 바탕으로 NLP, CV 등 다양한 분야에 새로운 발전을 이끌어 낸 딥러닝 모델입니다. 본 포스팅에 앞서, Attnetion Mechanism을 공부하지 않은 경우 아래 포스팅에서 먼저 공부 하시는 것을 추천합니다.https://jinwoo-jung.tistory.com/148 [EECS 498] Lecture 17: Attention본 포스팅은 Michigan Univ.의 EECS 4..

IntroductionObject Detection Task는 Machine Learning이 필수적으로 요구된다. 모델의 성능 향상을 위해선 더 큰 데이터 셋(Large Dataset), 더 강인한 모델의 학습(More Powerful Model), 과적합(Preventing Overfitting)을 막기 위한 기술의 사용이 요구된다.Large Dataset이전까지는 Label을 유지한 Augmentation을 사용하면, 데이터 셋의 크기가 작아도 충분히 좋은 성능을 보였다. 하지만, 현실에서의 객체 인식 문제의 차원은 크고 다양한다. 즉, Occlusion, 조명, 변형 등 현실 세계에서의 다양성과 복잡성을 작은 데이터 셋은 충분히 반영하지 않고 있다. 또한, 작은 데이터 셋은 모델의 Overfitt..

본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교 박인규 교수님의 컴퓨터 비전 과목을 기반으로 제작된 포스팅입니다.https://jinwoo-jung.tistory.com/113 [ 컴퓨터 비전 ] Ch5. Deep Learning...3본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교jinwoo-jung.com OverfittingOverfitting..