일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 그래프 이론
- clustering
- AlexNet
- canny edge detection
- 자료구조
- IN
- C++
- dfs
- image processing
- classification
- Mask Processing
- DP
- opencv
- TD
- Python
- BFS
- SIFT
- 강화학습
- edge detection
- 인공지능
- 백준
- dynamic programming
- 딥러닝
- exists
- machine learning
- 머신러닝
- MinHeap
- sklearn
- MySQL
- Reinforcement Learning
- Today
- Total
목록딥러닝 (7)
JINWOOJUNG
YOLOv8을 통한 Object Detection을 위해선 적합한 Model을 생성해야 한다.Model 학습을 위해선 Custom Dataset을 구축해야 하며, YOLOv8의 경우 Roboflow를 통하여 진행하면 쉽게 구축 가능하다.https://app.roboflow.com/camera-ne3fn Sign in to RoboflowEven if you're not a machine learning expert, you can use Roboflow train a custom, state-of-the-art computer vision model on your own data.app.roboflow.com 먼저 Roboflow에 계정을 등록한 뒤 새로운 프로젝트를 생성한다. Project Name,..
본 게시글은 인하대학교 유상조 교수님의 Machine Learning Tutorial Seminar 수강 후정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Classification(분류) : 구별되는 클래스를 예측하는 작업 Regression(회귀) : 실수값/연속적인 값(continuous qunatity)을 예측하는 작업 Linear Regression Linear Regression은 하나 혹은 다수의 Input(explanatory/independent variables)와 Output(a scalar response/dependent variable)의 상관관계를 모델링하는 것이다. 이때 Input Data는 다음과 같이 정의된다. $$x^i = [..
본 게시글은 인하대학교 유상조 교수님의 Reinforcement Learning Tutorial Seminar 수강 후 정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Before This Episode https://jinwoo-jung.tistory.com/8 K-armed Bandit(1) 본 게시글은 인하대학교 유상조 교수님의 Reinforcement Learning Tutorial Seminar 수강 후 정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. K-armed Bandit 강 jinwoo-jung.tistory.com Upper Confidence Bounds(UCB) UCB Algorithm은 pot..
본 게시글은 인하대학교 유상조 교수님의 Reinforcement Learning Tutorial Seminar 수강 후 정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Before This Episode https://jinwoo-jung.tistory.com/7 Reinforcement Learning 본 게시글은 인하대학교 유상조 교수님의 Reinforcement Learning Tutorial Seminar 수강 후 정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Reinforcement Learn jinwoo-jung.tistory.com K-armed Bandit 강화학습 알고리즘의 알 종류인 K-armed..
본 게시글은 인하대학교 유상조 교수님의 Reinforcement Learning Tutorial Seminar 수강 후 정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Reinforcement Learning 강화학습은 Machine Learning의 subfield이다. Machine Learning Tasks로는 크게 Supervised/Unsupervised/Reinforcement learning으로 분류할 수 있다. Supervised Learning(지도학습) : labeled dataset으로 학습이 진행되며, classification/regression task에 사용된다. Unsupervised Learning(비지도 학습) : label이 ..
Abstract ImageNet LSVRC-2010에서 120만 개의 고해상도 이미지가 1000가지 클래스로 이루어진 Dataset을 Calssification 하기 위해 Large, Deep Convolution Neural Network(DCNN) 학습시켜, test dataset에 대한 37.5%의 Top-1 Error와 17.0%의 Top-5 Error를 달성하여 이전의 SOTA(State-Of-The-Art)보다 우수한 성능을 보였다. 해당 모델을 발전시켜 ILSVRC-2012에서 15.3의 Top-5 Error로 우승하였다. Introduction 객체 인식에 대한 접근 방식은 기계 학습 방법을 중요하게 활용한다. 최근까지 레이블이 지정된 이미지 데이터 셋은 수만장의 규모로 상대적으로 작았고,..
https://ffighting.net/deep-learning-paper-review/deep-learning-paper-guide/deep-learning-paper-guide/ 딥러닝 논문 가이드 - 딥러닝 전체 분야 핵심 논문 30개 딥러닝의 주요 논문 30여개를 연도별로 소개하고, 혁신적인 아이디어와 기술의 진화를 살펴봅니다. 복잡하고 다양한 논문 세계를 이해하는 데 도움을 주는 내용을 담고 있습니다. 딥러닝의 과거 ffighting.net 본 포스팅은 위 블로그에서 정리된 최신 논문의 흐름을 바탕으로 논문을 분석한 것을 정리하는 포스팅입니다. 딥러닝을 공부하면서 논문을 읽기 시작했는데 방대한 양과 너무 빠른 변화에 따라가기 힘들어서 고민하던 중 위 블로그가 시기별, 주제별로 논문의 흐름을 잘 ..