Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
Tags
- 딥러닝
- dfs
- deep learning
- two-stage detector
- machine learning
- NLP
- LSTM
- MySQL
- 머신러닝
- eecs 498
- image processing
- AlexNet
- ubuntu
- Python
- Mask Processing
- Reinforcement Learning
- One-Stage Detector
- opencv
- DP
- C++
- CNN
- real-time object detection
- 백준
- BFS
- 그래프 이론
- YoLO
- 강화학습
- MinHeap
- dynamic programming
- r-cnn
Archives
- Today
- Total
목록tensor basic (1)
JINWOOJUNG

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.0. 개발 환경OS : Ubuntu 20.04GPU : GeForce RTX 3070cuda version: 12.1torch version : 2.3.0+cu121 1. Tensor Basicsdef create_sample_tensor() -> Tensor: x = torch.tensor([[0, 10],[100, 0],[0,0]]) return x Tensor 객체는 torch.tensor를 통해 생성할 수 있다. x = mytorch.create_sample_tensor()print('Here is the sample tensor:')print(x)print(type(x))..
딥러닝/Michigan EECS 498
2024. 12. 22. 16:22