일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 머신러닝
- clustering
- 강화학습
- BFS
- AlexNet
- opencv
- 딥러닝
- MySQL
- Mask Processing
- IN
- exists
- MinHeap
- sklearn
- 백준
- canny edge detection
- Python
- edge detection
- SIFT
- DP
- dynamic programming
- TD
- Reinforcement Learning
- 그래프 이론
- object detection
- image processing
- C++
- machine learning
- 인공지능
- dfs
- classification
- Today
- Total
목록2024/05 (16)
JINWOOJUNG
금일은 다익스트라 알고리즘에 대하여 자세히 알아보자. 다익스트라 알고리즘은 Dynamic Programming을 활용한 최단 경로 탐색 알고리즘이다. 다익스트라를 DP를 활용하여 접근할 수 있는 이유는 최단 경로는 각각의 최단 경로를 포함하고 있기 때문이다. 따라서 이전까지 계산해 둔 최단 경로를 사용하여 하나의 최단 거리를 구한다. 기본적은 다익스트라 알고리즘의 프로세스는 다음과 같다. 1. 출발 노드 설정 2. 출발 노드를 기준으로 각 노드의 최소 비용 저장3. 방문하지 않은 노드 중 최소 비용 노드 설정4. 해당 노드를 경유해서 특정한 노드로 가는 경우를 고려해 최소 비용 갱신5. 2~4번 과정 반복 위와 같은 그래프가 주어졌다고 하자. 각 노드사이로 연결 된 간선은 비용을 의미한다. 각 문제에 ..
문제를 먼저 해석 해 보자. 3XN 테이블에는 양 또는 음의 정수가 주어진다. 각 열에는 적어도 1개의 조약돌을 놓아야 하며, 가로나 세로로 인접한 두 칸에 동시에 조약돌을 놓을 수 없다. 구해야 하는 것은 돌이 놓은 자리에 있는 수의 합을 최대가 되로고 하는 것이다. 결국 최대 비용 문제이다. 그리고, 이전 $i$번째 열에 놓을 수 있는 조약돌의 위치는 이전 열에 영향을 받기 때문에 Dynamic Programming으로 접근하여 재귀식을 도출해야 한다. 그렇다면 각 열에 놓을 수 있는 조약돌의 경우의 수는 뭘까? 위와 같이 총 4가지 경우의 수가 있다. 이를 각가 C1,2,3,4라 하자. 그렇다면 각 경우가 인접할 수 있는 경우의 수는 어떻게 될까? 2가지 제약조건을 고려한 인접 가능한 경우의 ..
접근법 최단경로 찾기에 적용 가능한 Dynamic Programming Algorithm이 바로 Floyd(플로이드)이다. 문제를 보면 특정 도시에서 다른 도시로 가는 서로다른 비용을 가지는 버스가 존재하고, 특정 도시에서 다른 도시로 가는 최소 비용을 구하는 문제이다. 따라서 주어진 문제(경로에 따른 비용)에 대하여 하나 이상의 많은 해가 존재할 때, 최적의 해답을 찾아야 하는 최적화 문제이다. 우리는 주어진 정보 중 출발 도시와 도착 도시 사이의 최소 cost를 원소로 가지는 인접 행렬식 $W$를 포현할 수 있다. 예를들어, $W[i][j]& 는 $i$에서 $j$로 가는 최소 비용을 의미한다. 만약 $i$에서 $j$로 가는 버스가 없다면, 구해야 하는 것은 최소 비용이기 때문에 무한대로 표현하고, ..
접근법또 다시 DP 문제이다. 각 물품에는 Weight, Value가 존재하고, 배낭이 버틸수 있는 Limit Weight는 K로 제한되어 있다. 따라서 목표는 Weight Sum이 K 이하인 최대한의 가치합을 가지는 물건들을 선택해야 한다. 최적성의 원리를 적용하여 해당 문제를 Dynamic Programming으로 해결할 수 있는지 살펴보자. 우리는 위와 같은 Table을 생각할 수 있다. 제한되는 무게에 따라서 각 물품을 담을 수 있는지가 결정되고, 그에 따라서 Value의 최대 합이 달라지기 때문이다. 따라서 해당 Table의 각 원소는 Limit Weight보다 작은 범위에서 고려되는 물품들의의 개수에 따른, 담을 수 있는 물품들의 가치 최대합이 들어가게 된다. 따라서 각 물품들의 Weight..
접근법 연쇄적인 행렬의 곱셈 순서를 결정하는 것은 DP 문제 중 하나로, 효율적은 행렬 곱셈 순서를 결정하는 문제이다. 문제에서 언급 되었듯이 행렬의 곱셈 순서에 따라서 요구되는 계산량이 달라지기 때문에, 곱셈 연산을 최소로 하는 순서를 결정해야 한다. 가장 기본적인 행렬 곱셈의 규칙을 생각 해 보자. $A$ 행렬은 $ i by j $, $B$ 행렬은 $k by l$이라 하면, 행렬 $A,B$의 곱셈 연산이 성립하기 위해서는 $j == k$여야 하며, 계산된 행렬을 $C$라 하면, $C$의 크기는 $ i by l $이 된다. 이러한 규칙을 고려하여, 연쇄 행렬곱셈을 DP를 이용하여 해결하기 위해서 재귀 관계식을 구축하면 다음과 같다. $$d_k = 행렬 A_k의 열의 수 /to A_k의 행의 수는 ..
https://jinwoo-jung.tistory.com/68 [ YOLOv8 ] Custom Dataset 구축(Roboflow)YOLOv8을 통한 Object Detection을 위해선 적합한 Model을 생성해야 한다.Model 학습을 위해선 Custom Dataset을 구축해야 하며, YOLOv8의 경우 Roboflow를 통하여 진행하면 쉽게 구축 가능하다.https://app.roboflow.com/cjinwoo-jung.com 구축한 Custom Dataset을 기반으로 YOLOv8 Model을 학습시켜 보자. Local 환경에서 학습시켜도 되지만, Google Colab을 활용하여 학습시켰다. 먼저 Colab 파일을 하나 생성한 뒤 GPU를 활용하도록 런타임 유형을 변경한다. !nvidia..
YOLOv8을 통한 Object Detection을 위해선 적합한 Model을 생성해야 한다.Model 학습을 위해선 Custom Dataset을 구축해야 하며, YOLOv8의 경우 Roboflow를 통하여 진행하면 쉽게 구축 가능하다.https://app.roboflow.com/camera-ne3fn Sign in to RoboflowEven if you're not a machine learning expert, you can use Roboflow train a custom, state-of-the-art computer vision model on your own data.app.roboflow.com 먼저 Roboflow에 계정을 등록한 뒤 새로운 프로젝트를 생성한다. Project Name,..
RGB 색 공간을 HSV로 확장시키고, 특정 객체의 색을 추출하고 Segmentation을 진행한다. 이를 K-Means Clustering으로 확장시켜 동일한 색상을 가진 객체를 Clustering 한 뒤, Segmentation을 진행하여 결과를 비교한다.Before This Episode 영상을 표현하는데 있어서 다양한 색상 모델이 존재한다. Gray Model밝기 정보만으로 영상을 표현. 0(검정)~255(흰)으로 $2^8$가지의 Intensity로 Pixel Intensity를 표현. RGB Model기본적인 색상모델로, 하나의 색을 Red, Green, Blue 3가지 성분의 조합으로 표현. HSV ModelHue(색조), Saturation(채도), Value(명도) 3가지 성분으로 색..