일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 그래프 이론
- 딥러닝
- MinHeap
- deep learning
- machine learning
- dropout
- AlexNet
- DP
- edge detection
- 강화학습
- image processing
- BFS
- C++
- overfitting
- MySQL
- eecs 498
- canny edge detection
- object detection
- 백준
- Reinforcement Learning
- dynamic programming
- SIFT
- dfs
- clustering
- sklearn
- Mask Processing
- Python
- exists
- opencv
- 머신러닝
- Today
- Total
목록2025/01/07 (4)
JINWOOJUNG
본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/135 [EECS 498] Assignment 3. Fully Connected Networks...(2)JINWOOJUNG [EECS 498] Assignment 3. Fully Connected Networks...(2) 본문 딥러닝/Michigan EECS 498 [EECS 498] Assignment 3. Fully Connected Networks...(2) Jinu_01 2025. 1. 7. 15:00jinwoo-jung.comDeep Fully Connected Networks에서 나아가 Convolutional Network..
보호되어 있는 글입니다.
https://jinwoo-jung.tistory.com/133 Very Deep Convolutional Networks for Large-Scale Image Recognition...(1)Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Imajinwoo-jung.com4. Classification E..
Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Image_Classification0. Abstract본 논문에서는 Convolutional Network의 Depth에 따른 성능을 분석한다. 3x3의 작은 Convolutional Filter를 사용하여 Network의 Depth를 16~19까지 증가시킴..